Maquette of the new science
complex
|
by Robert Scalia
Want
to find the quickest way to any chemists heart? Try a spanking new
state-of-the art $160,000 Fourier Transform Infrared Spectrofcopy system
and carte blanche in designing their own labs. Dr. Markus Lawrence, chair,
and Miriam Posner, technical supervisor, of the Department of Chemistry
and Biochemistry, can testify to that.
In fact, both burst into laughter when asked to criticize any aspect of
the $85-million Science Complex at Loyola Campus, which will become home
in August 2003.
The physical move itself might be rough, admits Lawrence. Hell miss
the downtown cuisine and, in retrospect, the Genomics Centre could have
been a little closer to their own department. Thats it, though.
Weve been in the Hall Building forever now, Lawrence explained,
in his 11th-floor office. This place is outdated, and pretty much
maxed-out in terms of research capacity.
Were here to provide the best possible teaching environment
for students, and expose them to whats being used in industry,
he added, Posner nodding with approval. The new building will help
us do that.
Hoping to avoid cramming these new state-of-the-art labs and instrument
rooms with junk, the department has gone on a shopping spree
with a $1-million cash infusion from the Faculty of Arts and Science. Lawrence
commended Dean Martin Singer for his commitment to the sciences, and for
making the new Science Complex a reality.
An FTIR-Raman, MALDI and LC-MS mass spectrometers and a nuclear magnetic
resonance (NMR) system have been purchased at a cost of about $400,000.
Five HPLC systems (high-pressure liquid chromatographs) have also been acquired,
worth roughly $65,000 each.
Experience with the cutting-edge
This new equipment will allow students to determine the molecular structures
of novel compounds and conduct cutting-edge experiments. They are necessary
tools for a real-world education, Lawrence said.
Its not just knowing what an NMR system does, Posner added,
the excitement creeping up in her voice. Its actually getting
to experience working with the NMR and other high-tech instruments.
Chemistry and Biochemistry will occupy one of the largest chunks of space
in the complex. Spread over four floors, the chemists and biochemists will
have close to 50 lab/instrument areas at their disposal. This will include
eight teaching labs, an amalgamated computer lab and a LabWorks facility,
where students can perform computer-aided experiments. Graduate students,
who are now assigned to desks in already over-crowded labs, will share offices
in the new complex.
All 21 faculty will work out of their own individual research labs, each
one custom-designed by its occupant.
Its a very detailed process, Posner said. These plans,
which she and Lawrence ultimately have to verify, are not finished just
yet. You get right into deciding where a sink should go, what faucet
to put on that sink, and what the current running through that particular
electrical circuit should be.
What is certain is the department will operate in a more hub-like layout
that will group corresponding labs and instrument rooms. Analytical, physical
and general chemistry students working in their separate labs will share
a balance room, for example. The service corridor, meanwhile, will allow
for the storage of equipment and transport of potentially hazardous chemicals.
You dont want undergraduate students carrying reagents through
the public corridors.
While promoting a safe and efficient environment, Posner hopes the mixed-function
complex will foster increased sharing and collaboration between departments.
The complex will also house Biology, the Centre for Structural and Functional
Genomics, the Centre for Research in Molecular Modelling, Physics, Exercise
Science and Psychology. It will probably give us a better sense of
community well be seeing each other more often, Posner
said.
Lawrence takes that line of reasoning a step further. He recalls a time
when physical chemists, for example, would only study the reaction of gases.
He believes those strict academic divisions are slowly dissolving.
Now, even physical chemists like myself are getting into genomics,
he said. Four faculty members in Chemistry and Biochemistry are currently
working with faculty from the genomics centre. Its by no means a huge
stretch to envision a future where such interaction will extend to the undergraduate
level.
Ultimately, whether it involves academic trends or those set by industry,
the key concern for Lawrence is keeping up. He said undergraduate students
dont get as much hands-on experience as he would have liked. While
he realizes no university has the deep pockets of Merck Frosst, for example,
he remains optimistic.
We have to train students to the best of our ability. I think they
like to feel like theyre on the cutting edge of technology.
|
|
|